【背景介紹】
氨是一種重要的化工原料,主要用于化肥生產(chǎn),近年來在綠色氫能載體和燃料方面表現(xiàn)出很大的潛力。近年來,光催化N2還原反應(yīng)(NRR)是一種非常有前景的氨合成方法,可以替代傳統(tǒng)的Haber-Bosch方法。研究表明,V有助于降低N2活化能,加速加氫過程,其中,BiVO4是定位V元素的理想底物,具有成本低、理化性質(zhì)優(yōu)越等優(yōu)點,在各種光催化應(yīng)用中具有很大的前景。目前,Ru作為活性中心不僅加速N2的吸附和活化,還降低了NRR定速步驟的熱力學(xué)能壘,被認(rèn)為是第二代氨合成催化劑。目前,Ru團簇負(fù)載的方法包括溶劑熱處理和在高溫惰性氣氛中使用硼氫化鈉還原。然而,高溫過程可能會破壞催化劑的結(jié)構(gòu),同時導(dǎo)致貴金屬聚集,從而限制了暴露的活性位點。因此,探索簡便、先進的方法在BiVO4上實現(xiàn)空位的構(gòu)建和金屬簇的負(fù)載具有重要意義,其中載體與金屬之間的強MSI效應(yīng)可以為光催化NRR提供高效的N2吸附位點和電子轉(zhuǎn)移通道。
【內(nèi)容簡介】
日前,中國海洋大學(xué)化學(xué)化工學(xué)院海洋化學(xué)理論與工程技術(shù)教育部重點實驗室的孟祥超教授課題組在Journal of Catalysis上發(fā)表了題為“Rapid Joule-Heating fabrication of oxygen vacancies and anchor of Ru clusters onto BiVO4 for greatly enhanced photocatalytic N2 fixation”的研究文章,作者采用快速焦耳熱方法形成氧空位,并進一步誘導(dǎo)Ru團簇沉積在BiVO4上??焖俳苟訜岱ㄔ贐iVO4上制造氧空位,形成富電子活性Ru位和不飽和V位。原始BiVO4在光催化合成氨中幾乎沒有活性。氧空位形成后,BiVO4的光催化產(chǎn)氨率提高到3.88 μmol g-1 h-1。負(fù)載Ru簇后,BiVO4的光催化產(chǎn)氨率進一步提高到16.57 μmol g-1 h-1。結(jié)果表明,靠近氧空位和Ru簇的不飽和V位點可能是N2吸附和活化的活性位點。Ru和BiVO4之間的強金屬載體相互作用導(dǎo)致Ru簇和BiVO4載體之間的電荷重新分配,從而降低了N2加氫速率決定步驟的能量勢壘。DFT進一步證實了聯(lián)想交替通路適用于這一過程。
【圖文速覽】
圖1 (a) Schematic illustration for preparation of the Ru/BiVO4-VO catalysts. (b) SEM, (c) HRTEM images of BiVO4, (d) HRTEM images of BiVO4-VO (e) TEM images and the diameter size distribution of Ru/BiVO4-VO (f) HRTEM images and (g) the corresponding element mappings of Ru/BiVO4-VO.
圖2 (a, b) XRD patterns of BiVO4, BiVO4-VO, Ru/BiVO4-d-VO and Ru/BiVO4-VO. High-resolution XPS spectra for (b) Bi 4f, (c) V 2p, (d) O 1 s of BiVO4, BiVO4-VO, Ru/BiVO4-d-VO and Ru/BiVO4-VO. (e) EPR spectra of different samples, (f) High-resolution XPS spectra for Ru 3d + C 1 s of Ru/BiVO4-VO and Ru/BiVO4-d-VO.
圖3 Photocatalytic N2 fixation performances of (a) BiVO4, BiVO4-VO and Ru/BiVO4-VO. The ammonia production rate of Ru/BiVO4-VO obtained from (b) different calcination temperatures, (c) different Ru contents and (d) M/BiVO4-VO (M = Ru, Au, Ag, Pt, Pd). (e) Photocatalytic ammonia production rate for cyclic tests of Ru/BiVO4-VO and (f) Calculated AQEs (green dots) for ammonia production rate over Ru/BiVO4-VO along with its light absorption spectrum (red line).
圖4 (a) SPV, (b) Photocurrent responses, (d) EIS spectra, (d) PL spectra, (e) Time-resolved transient PL decay and (f) N2-TPD spectra of BiVO4, BiVO4-VO and Ru/BiVO4-VO.
圖5 (a) DRS spectra, (b) Tauc plots of (ɑhν)1/2 versus energy (hν), (c) XPS valence spectra of BiVO4, BiVO4-VO and Ru/BiVO4-VO. Calculated band structures of (e)
BiVO4, (f) BiVO4-VO.
圖6 In-situ XPS spectra treating with irradiation of Ru/BiVO4-VO for (a) Bi 4f, (b) V 2p, (c) Ru 3d + C 1 s of BiVO4, BiVO4-VO and Ru/BiVO4-VO. (d) Diagram of charge transfer and valence change of Ru/BiVO4-VO during photocatalytic NRR.
圖7 (a) Structures of N2 adsorbed on different sites of catalysts. (b) Bader charges density difference of Ru/BiVO4-VO, (c) Difference charge density of Ru/BiVO4-VO with the adsorption of N2. Free energy diagrams for N2 reduction on (d) BiVO4-VO and (e) Ru/BiVO4-VO through distal and alternating mechanisms with corresponding reaction energy.